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SUMMARY

Vortex-induced vibrations of a circular cylinder placed in a uniform flow at Reynolds number 325 are
investigated using a stabilized space–time finite element formulation. The Navier–Stokes equations for
incompressible fluid flow are solved for a two-dimensional case along with the equations of motion of the
cylinder that is mounted on lightly damped spring supports. The cylinder is allowed to vibrate, both in
the in-line and in the cross-flow directions. Results of the computations are presented for various values
of the structural frequency of the oscillator, including those that are sub and superharmonics of the
vortex-shedding frequency for a stationary cylinder. In most of the cases, the trajectory of the cylinder
corresponds to a Lissajou figure of 8. Lock-in is observed for a range of values of the structural
frequency. Over a certain range of structural frequency (Fs), the vortex-shedding frequency of the
oscillating cylinder does not match Fs exactly; there is a slight detuning. This phenomenon is referred to
as soft-lock-in. Computations show that this detuning disappears when the mass of the cylinder is
significantly larger than the mass of the surrounding fluid it displaces. A self-limiting nature of the
oscillator with respect to cross-flow vibration amplitude is observed. It is believed that the detuning of
the vortex-shedding frequency from the structural frequency is a mechanism of the oscillator to self-limit
its vibration amplitude. The dependence of the unsteady solution on the spatial resolution of the finite
element mesh is also investigated. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: finite elements; unsteady flows; vortex-shedding; flow-induced vibrations; lock-in; soft-lock-in

1. INTRODUCTION

Flow-induced vibration of a circular cylinder has been investigated by various researchers in
the past few decades. Most of these efforts are based on laboratory experiments and very few
on computational techniques. Some of the phenomena associated with this type of fluid–
structure interactions are quite well known and the reference material is available in books, e.g.
by Blevins [1] and Chen [2], and in review articles, e.g. by Sarpkaya [3] and King [4]. It is well
known that at Reynolds numbers beyond approximately 40, a cylinder placed in a uniform
flow experiences alternating lift and drag forces due to vortex-shedding. A cylinder mounted
on flexible supports is, therefore, expected to undergo cross-flow and in-line vibrations.
Usually, the time-varying component of the lift force is an order of magnitude larger than the
time-varying drag force. Therefore, in general, the cylinder oscillations are predominantly in
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the cross-flow direction. For this reason most of the research efforts in the past have been
concentrated on cross-flow oscillations. A cylinder that is subjected to forced cross-flow
oscillations with an amplitude beyond a certain threshold value exhibits the phenomenon of
lock-in. The vortex-shedding frequency of the oscillating cylinder changes to the frequency
of cylinder vibrations [5]. Similar observations are made for cylinders that are mounted on
flexible supports and are allowed to undergo vortex-induced oscillations [6]. The flow field
changes significantly as a result of the cylinder oscillations. The same observations were
made in a computational study by Mittal and Tezduyar [7]. Flow past cylinders subjected
to forced in-line oscillations was studied by Griffin and Ramberg [8]. They observed that
two distinct modes of vortex-shedding are present. These observations were confirmed by
Chang and Sa [9] using a numerical model. In another computational study, Mittal and
Tezduyar [7] observed that a cylinder subjected to in-line oscillations at a certain frequency
results in a symmetric mode of vortex-shedding. For a cylinder restricted to cross-flow
vortex-induced vibrations, they were able to observe the phenomena of lock-in and hys-
teresis. When the Reynolds number lies in a certain range, depending on the initial condi-
tions for the computation, a high or a low oscillation amplitude solution may be realized.
Hysteresis has been observed by various researchers in the past in laboratory experiments
[3] but the exact cause of the phenomenon was not known. While some researchers at-
tributed it to the non-linear springs in the mountings, others suspected it to be a conse-
quence of variable structural damping. Mittal and Tezduyar [7] concluded, through
numerical experiments, that hysteresis is a consequence of lock-in. Lock-in occurs only if
the vibration amplitude of the cylinder is greater than a certain threshold value [5]. For a
certain range of Reynolds number, if the initial condition corresponds to a cylinder vibrat-
ing with a large amplitude, i.e. beyond the threshold value for lock-in, the vortex-shedding
frequency locks-on to the structural frequency and one realizes a high-amplitude solution.
On the other hand, if one begins with a solution that corresponds to low-amplitude oscilla-
tions, i.e. below the threshold required for lock-in, a low-amplitude solution is realized. The
oscillator parameters, like the mass of the cylinder, damping and stiffness of the spring
were chosen to simulate one of the systems of Griffin et al. [6] for their experimental
investigations. Flow structure in the wake of a cylinder with forced oscillations has been
investigated by many other researchers, e.g. Tanida et al. [10], Olinger and Sreenivasan [11],
Griffin [12], Toebes [13], Lecointe et al. [14], Durgin et al. [15], Williamson and Roshko
[16], Blackburn and Henderson [17], and Ongoren and Rockwell [18,19]. In some of these
studies the cylinder is subjected to oscillations at frequencies that are sub- and superhar-
monics of the natural vortex-shedding frequency for a stationary cylinder.

In this article we report our computational results for flow-induced vibrations of a
cylinder that is mounted on flexible supports and is allowed to oscillate in both cross-flow
and in-line directions. The computations are restricted to two dimensions. This work is an
extension to the investigation by Mittal and Tezduyar [7], who reported results for flow
past an oscillating cylinder restricted to cross-flow vibrations. It is well known that the
in-line oscillations are significant only if the mass of the cylinder is not too large compared
with the mass of the surrounding fluid it displaces. For the same reason, the mass of the
oscillator used in the present work is one-hundredth of the one used by Mittal and Tezdu-
yar [7]. The Reynolds number based on the free-stream speed is 325 and computations are
carried out for various values of the structural frequency including the sub and superhar-
monics of the natural vortex-shedding frequency for a stationary cylinder. The computa-
tions lead to various interesting observations. As expected, lock-in is observed for a range
of values of the structural frequency, but in a manner that is slightly different than the
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conventional one. Over a certain range of structural frequencies (Fs), when it is slightly
larger than the natural vortex-shedding frequency (F0), the vortex-shedding frequency of the
oscillating cylinder does not exactly match the structural frequency; there is a slight detun-
ing, which increases as Fs moves away from F0. We would like to refer to this phenomenon
as soft-lock-in. This is unlike what one observes in the conventional phenomenon of lock-
in, where the vortex-shedding frequency of the oscillating cylinder, mounted on flexible
supports, exactly matches the natural vortex-shedding frequency. When the mass of the
oscillator is increased, our computations show that the vortex-shedding frequency of the
oscillating cylinder matches the structural frequency. This suggests that the phenomenon of
soft-lock-in is associated with oscillators of low non-dimensional mass (non-dimensionalized
with the mass of the surrounding fluid displaced by the cylinder). In most of the cases, the
trajectory of the cylinder corresponds to a Lissajou figure of 8. The frequency of in-line
oscillations is twice that of the cross-flow vibrations. Similar observations have been made
earlier by researchers during laboratory experiments [1,2]. Another interesting observation
that can be made from our computations is regarding the dependence of the unsteady
solution on the spatial resolution of the discretization for this class of flow problems. Three
different finite element meshes (M1, M2 and M3) of varying spatial resolutions have been
employed in the present study. The mesh (M1) with the least number of nodes is fine
enough to capture, accurately, the unsteady flow structures for flows with Reynolds num-
bers in the range of 325. In fact, all the results presented by Mittal and Tezduyar [7] were
computed with the same finite element mesh and their results are in excellent agreement
with those from laboratory experiments for flows with stationary cylinder. However, in the
present work we discovered that for the oscillating cylinder, for certain values of the
structural frequency, the resolution provided by mesh M1 is not adequate for accurate
computations. Computations with mesh M2 result in qualitatively different time histories
than the ones obtained from mesh M1, while they are almost indistinguishable from those
obtained with mesh M3. These calculations demonstrate that even though a mesh (e.g. M1
in this case) may be good enough to resolve all the spatial structures at a certain Reynolds
number, the same mesh may not provide enough resolution for computing flows involving
moving boundaries and interfaces.

The outline of the rest of this paper is as follows. We begin by reviewing the governing
equations for incompressible fluid flow and for the motion of a rigid body under the
influence of unsteady fluid forces in Section 2. To accommodate the deformation of the
spatial domain, we employ the deforming spatial domain/stabilized space–time (DSD/SST)
technique introduced by Tezduyar et al. [20,21]. The DSD/SST technique is based on the
space–time finite element method in which the finite element interpolation functions depend
both on space and on time. In this way the deformation of the spatial domain is taken
into account automatically. Special mesh-moving schemes, as described by Mittal and
Tezduyar [7], are used to accommodate moving boundaries such that remeshing is avoided.
To stabilize the computations against spurious numerical oscillations and to enable the use
of equal-order interpolation velocity–pressure elements, the Galerkin/least-squares (GLS)
stabilization technique is employed. Section 3 describes the finite element formulation
incorporating these stabilizing terms. The non-linear equation systems resulting from the
finite element discretization of the flow equations are solved using the generalized mini-
mal residual (GMRES) technique [22] in conjunction with diagonal preconditioners. In
Section 4 we present our computational results and make some concluding remarks in
Section 5.
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2. THE GOVERNING EQUATIONS

Let Vt¦R
nsd and (0, T) be the spatial and temporal domains respectively, where nsd is the

number of space dimensions, and let Gt denote the boundary of Vt. The spatial and temporal
co-ordinates are denoted by x and t. The Navier–Stokes equations governing incompressible
fluid flow are

r
�(u
(t

+u ·9u− f
�

−9 ·s=0 on Vt for (0, T), (1)

9 ·u=0 on Vt for (0, T). (2)

Here r, u, f and s are the density, velocity, body force and the stress tensor respectively. The
stress tensor is written as the sum of its isotropic and deviatoric parts

s= −pI+T, T=2mo(u), o(u)=
1
2

((9u)+ (9u)T), (3)

where p and m are the pressure and viscosity. Both the Dirichlet- and Neumann-type boundary
conditions are accounted for, represented as

u=g on (Gt)g, n ·s=h on (Gt)h, (4)

where (Gt)g and (Gt)h are complementary subsets of the boundary Gt and n is its unit normal
vector. The initial condition on the velocity is specified on Vt at t=0

u(x, 0)=u0 on V0, (5)

where u0 is divergence free. A solid body immersed in the fluid experiences unsteady forces and
in certain cases may exhibit rigid body motion. The motion of the body, in the two directions
along the Cartesian axes, is governed by the following equations:

X8 +2pFszX: + (pFs)2X=
CD

M
for (0, T), (6)

Y8 +2pFszY: + (pFs)2Y=
CL

M
for (0, T), (7)

where Fs is the reduced natural frequency of the oscillator, z is the structural damping
coefficient, M is the non-dimensional mass of the body while CL and CD are the instantaneous
lift and drag coefficients for the body respectively. The free-stream flow is assumed to be along
the x-axis. X8 , X: and X denote the normalized in-line acceleration, velocity and displacement
of the body respectively, while Y8 , Y: and Y represent the same quantities associated with the
cross-flow motion. In the present study, in which the rigid body is a circular cylinder, the
displacement and velocity are normalized by the radius of the cylinder and the free-stream
speed respectively. The reduced natural frequency of the system, Fs, is defined as 2fsa/U�,
where fs is the actual frequency of the oscillator, a is the radius of the cylinder and U� is the
free-stream speed of the flow. The non-dimensional mass of the cylinder is defined as
M=mb/r�a2, where mb is the actual mass of the oscillator per unit length and r� is the
density of the fluid. It may also be expressed as M=p(rs/r�), where rs is the effective density
of the material of the cylinder. The force coefficients are computed by carrying an integration,
which involves the pressure and viscous stresses, around the circumference of the cylinder
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CD=
1

1
2r�U�2 2a

&
Gcyl

(sn) ·nx dG, (8)

CL=
1

1
2r�U�2 2a

&
Gcyl

(sn) ·ny dG. (9)

Here nx and ny are the Cartesian components of the unit vector n, which is normal to the
cylinder boundary Gcyl. These coefficients include the fluid dynamic damping and the added
mass effect. The initial conditions for the displacement and velocity of the cylinder are
specified at t=0

X(0)=X0, X: (0)=X: 0, (10)

Y(0)=Y0, Y: (0)=Y: 0. (11)

The equations governing the fluid flow are solved in conjunction with those for the motion of
the cylinder. The force acting on the body is calculated by integrating the flow variables on the
body surface. The resulting drag and lift coefficients are used to compute the displacement and
velocity of the body, which are then used to update the location of the body and the no-slip
boundary condition for the velocity field on the body surface.

3. FINITE ELEMENT FORMULATIONS

To accommodate the motion of the cylinder and the deformation of the mesh, the stabilized
finite element formulation is employed. In order to construct the finite element function spaces
for the space–time method, we partition the time interval (0, T) into subintervals In= (tn, tn+1),
where tn and tn+1 belong to an ordered series of time levels: 0= t0B t1B · · · B tN=T. Let
Vn=Vtn

and Gn=Gtn
, we then define the space–time slab Qn as the domain enclosed by the

surfaces Vn, Vn+1 and Pn, where Pn is the surface described by the boundary Gt as t traverses
In. As is the case with Gt, the surface Pn is decomposed into (Pn)g and (Pn)h with respect to the
type of boundary condition (Dirichlet or Neumann) being imposed. For each space–time slab
we define the corresponding finite element function spaces: (Su

h)n, (Vu
h)n, (Sp

h)n and (Vp
h)n. Over

the element domain, this space is formed by using first-order polynomials in space and time.
Globally, the interpolation functions are continuous in space but discontinuous in time.

The stabilized space–time formulation for deforming domains is then written as follows:
given (uh)n−, find uh� (Su

h)n and ph� (Sp
h)n such that Öwh� (Vu

h)n, qh� (Vp
h)n,&

Qn

wh ·r
�(uh

(t
+uh ·9uh− f

�
dV+

&
Qn

o(wh): s(ph, uh) dQ+
&

Qn

qh9 ·uh dQ

+ %
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n
·
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r
�(uh
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+uh ·9uh− f
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dQ
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e=1
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Qn

e

d9 ·whr9 ·uh dQ+
&

Vn

(wh)n
+ ·r((uh)n

+ − (uh)n
−) dV=

&
(Pn)h

wh ·hh dP. (12)

This process is applied sequentially to all the space–time slabs Q1, Q2, . . . , QN−1. In the
variational formulation given by Equation (12), the following notation is being used:

(uh)n
9= lim

o�0
u(tn9o), (13)
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&
Qn

(· · ·) dQ=
&

In

&
Vn

(· · ·) dV dt, (14)&
Pn

(· · ·) dP=
&

In

&
Gn

(· · ·) dG dt. (15)

The computations start with

(uh)0
− =u0, (16)

where u0 is divergence free.
In the variational formulation given by Equation (12), the first three terms and the

right-hand-side constitute the Galerkin formulation of the problem. The series of element-level
integrals involving the coefficients t and d are the least-squares terms that are added to the
basic Galerkin formulation to ensure the stability of the computations. This type of stabiliza-
tion is referred to as the GLS procedure and is a generalization of the streamline-upwind/
Petrov–Galerkin (SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG) methods [23]. In
the current formulation, t and d are given as

t=
��2uh

h
�2

+
�4n

h2

�2�−1/2

, (17)

d=
h
2

uhz, (18)

where

z=Í
Ã

Ã

Á

Ä

�Reu

3
�

1

Reu53

Reu\3

,

and Reu is the cell Reynolds number. Both stabilization terms are weighted residuals and
therefore maintain the consistency of the formulation. The sixth term in Equation (12) enforces
weak continuity of the velocity field across the space–time slabs.

The equations of motion for the oscillator given by Equations (6)–(11) are also cast in the
space–time formulation in the same manner as described in the work by Tezduyar et al. [21]
and Mittal [24].

4. NUMERICAL SIMULATIONS

All the computations reported in this article are carried out on the Digital workstations at IIT
Kanpur in 64-bit precision. Equal-in-order basis functions for velocity and pressure, which are
bilinear in space and linear in time, are used and a 2×2×2 Gaussian quadrature is employed
for numerical integration. The non-linear equation systems resulting from the finite element
discretization of the flow equations are solved using the GMRES technique [22] in conjunction
with diagonal preconditioners. The cylinder resides in a rectangular computational domain
whose upstream and downstream boundaries are located at 8 and 22.5 cylinder diameters from
the center of the cylinder respectively. The upper and lower boundaries are placed at 8
diameters from the center of the cylinder. The no-slip condition is specified for the velocity on
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the cylinder wall and free-stream values are assigned for the velocity at the upstream
boundary. At the downstream boundary, we specify a Neumann-type boundary condition for
the velocity, which corresponds to zero viscous stress vector. On the upper and lower
boundaries, the component of velocity normal to and the component of stress vector along
these boundaries are prescribed zero value. Reynolds number, based on the diameter of the
cylinder, free-stream velocity and the viscosity of the fluid is 325. The non-dimensional mass
M of the cylinder is 4.7273 and the structural damping coefficient is 3.3×10−4. While the
mass of the oscillator in the present study is one-hundredth the value considered by Mittal and
Tezduyar [7], the damping coefficient has the same value. The lower mass of the oscillator is
considered here to encourage the in-line oscillations. The parameters for the oscillator used by
Mittal and Tezduyar [7] correspond to the values for one of the models employed by Griffin
et al. [6] for their experimental investigations. The behavior of the oscillator observed from
computations of Mittal and Tezduyar [7] and laboratory experiments of Griffin et al. [6] are
qualitatively similar. The discrepancy in the magnitude of the various observed quantities can
be attributed to the three-dimensionality of the flow and the turbulent wake that is expected
at such Reynolds numbers. As in the previous work, the present computations are restricted to
two dimensions and to low Reynolds number (=325). Flows at larger Reynolds number are
also being computed and will be reported in a later article. Computations are carried out for
various values of the non-dimensional structural frequency of the system including those that
are sub and superharmonics of the natural vortex-shedding frequency for the stationary
cylinder. The effect of the mass M of the oscillator is also investigated for some cases. In all
the cases, first the steady state solution is computed for flow past a stationary cylinder at Re
325. This solution is then perturbed by applying, on the cylinder surface, a belt-type boundary
condition that consists of a set of counter-clockwise and clockwise rotations. Computations are
carried out until a periodic solution develops. The unsteady solution for the flow past the
stationary cylinder is used as an initial condition for computing the flow past the oscillating
cylinder. The computations are carried out using three finite element meshes. Mesh M1
consists of 4209 nodes and 4060 elements, mesh M2 consists of 7332 nodes and 7126 elements,
while mesh M3 has 11706 nodes and 11448 elements. A view of the various meshes is shown
in Figure 1. The mesh-moving scheme is same as the one used by Mittal and Tezduyar [7].

Figure 2 shows the summary of the computed results. It shows the variation of the
non-dimensional cross-flow and in-line oscillation amplitudes, amplitudes of the unsteady
components of the lift and drag coefficients, mean drag coefficient and the vortex-shedding
frequency with respect to the structural frequency of the oscillator. The data related to the
stationary cylinder are also shown in the same figure. It can be observed from the figure that,
as has been reported by various researchers in the past, the motion of the cylinder alters the
flow field significantly. This effect manifests itself in the aerodynamic forces experienced by the
cylinder and the related Strouhal number for the vortex-shedding frequency. When the
structural frequency (Fs) of the oscillator is close to the natural shedding frequency of the
cylinder, one observes the phenomenon of lock-in ; the cylinder vibrates with a large amplitude
and the vortex-shedding frequency locks on to the structural frequency. The range of structural
frequency over which lock-in takes place depends on a number of factors, e.g. the structural
damping coefficient, the Reynolds number and the mass of the oscillator. In the present case,
the phenomenon of lock-in occurs but in a manner that is different than what has been
observed in earlier studies. It is observed from Figure 2 that when the structural frequency lies
in a certain range which is close to the natural vortex-shedding frequency for the stationary
cylinder, the cylinder oscillates with a large cross-flow vibration amplitude. However, over
a certain range of structural frequency, when Fs is slightly larger than the natural
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Figure 1. Re=325 flow past a cylinder: finite element meshes; (top) mesh M1 with 4209 node and 4060 elements,
(middle) mesh M2 with 7332 nodes and 7126 elements and (bottom) mesh M3 with 11706 nodes and 11448 elements.
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Figure 2. Re=325 flow past an oscillating cylinder: variation of the amplitudes of the unsteady components of the
drag and lift coefficients, non-dimensional in-line (2Ax/D) and cross-flow (2Ay/D) oscillation amplitudes, mean drag

coefficient and the vortex-shedding frequency (F) with respect to the structural frequency (Fs) of the oscillator.
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vortex-shedding frequency (F0), the vortex-shedding frequency of the oscillating cylinder does
not exactly match the structural frequency; there is a slight detuning that increases as Fs moves
away from F0. We would like to refer to this phenomenon as soft-lock-in. This is unlike what
one observes in the conventional phenomenon of lock-in where the vortex-shedding frequency
of the oscillating cylinder, mounted on flexible supports, exactly matches the structural
frequency. As expected, the cross-flow vibration frequency of the oscillator assumes the same
value as the vortex-shedding frequency. In an earlier work, Mittal and Tezduyar [7] had
reported computational results for the flow-induced vibration of a circular cylinder using the
same finite element formulation as the one used in this article and for a similar range of
Reynolds numbers. However, in that work the mass of the cylinder was much larger and the
motion of the oscillator was restricted to cross-flow vibrations. A lock-in of the conventional
type was observed by them. The difference between their results and the present ones can,
therefore, be attributed to either the lower mass of the oscillator or the presence of in-line
oscillations. Our computations with the cylinder vibrations restricted to the cross-flow direc-
tion still result in soft-lock-in. When the mass of the oscillator is increased while it is free to
vibrate, both in the cross-flow and in the in-line directions, a conventional lock-in is observed,
which suggests that it is the lower mass of the oscillator that is responsible for soft-lock-in.
More details on this phenomenon will be given later in the article.

It can also be seen from Figure 2 that the large amplitude vibrations of the cylinder lead to
an increased mean and temporally fluctuating drag coefficient. In most of the cases, except for
large values of the structural frequency, the vibrations in the cross-flow direction are
significantly larger than the ones in the in-line direction. While the variation of amplitude of
cross-flow vibrations with structural frequency shows only one peak, the variation of ampli-
tude of in-line oscillations shows two peaks, one close to the natural vortex-shedding frequency
and the other at approximately 2.5 times the first one. This is consistent with the behavior of
cross-flow and in-line vibrations reported in the review article by King [4]. He reports that the
cross-flow oscillations in air occur in the range of 0.125BFsB0.21, while in water the
excitation range increases to 0.1BFsB0.22. The in-line oscillations, in water, are contained
within two adjacent but separate instability regions. The first region is in the range 0.26BFsB
0.37, while the second one is 0.4BFsB0.8. The first region is associated with the antisymmet-
ric mode of vortex shedding while the second one is characterized by symmetric
vortex-shedding, where a pair of counter-rotating vortices is shed from the opposite sides of
the cylinder. This symmetric mode of vortex shedding was also observed by Mittal and
Tezduyar [7] for forced in-line oscillations of a cylinder with an amplitude of one cylinder
radius at Re=100. In the present computations, the second region of instability for the in-line
oscillations occurs around Fs=0.53 and is associated with the anti-symmetric mode of
vortex-shedding, unlike the observations by King. However, it should be noted that the results
reported by King are for high-Reynolds number flows. An interesting experimental study was
conducted by Ongeron and Rockwell [18,19] in which they investigated the mode competition
in the near wake of an oscillating cylinder for Reynolds numbers in the range 584BReB1300.
They observed that the various vortex-shedding modes can be categorized into two basic
groups: symmetrical vortex-formation and anti-symmetrical vortex-formation. There are four
basic anti-symmetric modes and only one symmetric mode. The symmetric mode is observed
in some of the cases when the cylinder is subjected to forced oscillations at a frequency that

Figure 3. Re=325 flow past an oscillating cylinder: vorticity and pressure fields for the temporally periodic solution
at the peak value of the lift coefficient for various values of Fs. The top row is for stationary cylinder. Values of Fs

from second row onwards are F0/3, F0/2, F0, 2F0, 3F0 and 4F0.
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is a superharmonic of the natural vortex-shedding frequency. However, when the angle of
oscillations with respect to the free-stream is close to 90°, i.e. the cylinder is subjected to
predominantly cross-flow oscillations, it is mostly the anti-symmetric mode of vortex-shedding
that is preferred. The results from present computations are consistent with this observation.
This suggests that the phenomenon is quite sensitive to the Reynolds number and further
investigation is needed to understand it. Blackburn and Henderson [17] have also observed
Reynolds number dependence in the vortex-shedding patterns in flow past an oscillating
cylinder.

4.1. Re=325 flow past a stationary cylinder

An unsteady solution for flow past a stationary circular cylinder at Re=325 is computed
and is later used as an initial condition for the cases involving oscillating cylinders. Flow past
a circular cylinder at Re=100 has become a standard benchmark problem and various
researchers in the past have reported their computed results, which are in good agreement with
experimental observations [23–26]. Results for flow at Re=100 computed with formulations
similar to the one used in this article are in excellent agreement with experimental observations
[24]. The finite element mesh M1 is utilized for the computations of the present case. The top
row in Figure 3 shows the vorticity and pressure fields for the temporally periodic solution at
the peak value of the lift coefficient. Figure 4 shows the time histories of the drag and lift
coefficients and their power spectra. The Strouhal number corresponding to the dominant
frequency of the lift variation is 0.21 and the mean drag coefficient is 1.4. Our computational
results overpredict, slightly, both the quantities compared with the experimental results [27]. It
has been observed in the past by various researchers [28–30] that two-dimensional computa-
tions tend to overpredict the mean drag coefficient and the Strouhal number, while results
from three-dimensional computations are closer to experimental observations. It is also well
known that beyond a Reynolds number of approximately 300, the three-dimensional effects in
the wake of the cylinder become significant [31]. This suggests that, to get a true picture of the

Figure 4. Re=325 flow past a stationary cylinder: time histories of the drag and lift coefficients and their power
spectra.
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phenomenon, one must carry out three-dimensional computations. However, due to the
constraints of the available computational resources, simulations reported in this article are
restricted to two-dimensional cases only, with the understanding that these represent the real
life situations in an approximate sense. The Strouhal number corresponding to the vortex-
shedding for this case will be referred to as the natural vortex-shedding frequency (F0) in the
rest of the article.

4.2. Re=325 flow past an oscillating cylinder: effect of structural frequency, Fs

A fairly comprehensive study of flow-induced vibrations of a circular cylinder was reported
by Mittal and Tezduyar [7]. In their model the motion of the cylinder is restricted to the
cross-flow direction and the mass of the oscillator is quite high compared with the one in the
present case (or, alternately, the surrounding fluid is much lighter). The structural frequency of
the oscillator matches the natural vortex-shedding frequency at a Reynolds number of
approximately 325. Computations were carried out for various Reynolds numbers in the
vicinity of 325. The phenomenon of lock-in was observed for a range of Reynolds number.
They were also able to capture the effect of hysteresis in their simulations and were able to
explain it based on observations made by other researchers.

In this section to begin with, a summary of results is presented for the flow-induced
vibrations of the cylinder when the structural frequency is equal to the natural vortex-shedding
frequency (F0) and its sub and superharmonics. Figure 3 shows the vorticity and pressure fields
for the temporally periodic solution corresponding to the peak value of the lift coefficient for
the oscillating cylinder. The top row shows the solution for stationary cylinder, the second row
for Fs=F0/3, the third one for Fs=F0/2 and the fourth one for the case when the structural
frequency is equal to the natural vortex-shedding frequency (Fs=F0). The rest of the figure
shows the solution when Fs is the second, third and fourth superharmonic of F0. It can be
noticed that the static in-line deflection of the cylinder increases as the structural frequency
decreases. This is despite a significantly lower mean drag coefficient at low vibration frequen-
cies than that at Fs=F0. This behavior can be attributed to the reduction of the structural
stiffness of the oscillator as the structural frequency decreases, since the mass is constant.
Figure 5 shows the time histories of the drag and lift coefficients and the cylinder trajectory for
various values of Fs. In the cases corresponding to Fs=0.07 (=F0/3) and Fs=0.105 (=F0/2),
the cylinder vibrates mainly in the cross-flow direction. The Strouhal number corresponding to
the vortex-shedding frequency and the vibration of the cylinder assumes a value that is neither
equal to Fs nor F0 but somewhere in between the two. This is also apparent from Figure 2,
where one can observe that the longitudinal spacing between the vortices in the second and
third rows is larger than that in the first row for stationary cylinder. Figure 6 shows the
vorticity and pressure fields at five time instants during one cycle of cross-flow vibration of the
cylinder for the periodic solution when Fs=0.21 (=F0). The time histories of the drag and lift
coefficients, cylinder displacements and phase plots for this case are shown in Figure 7. This
solution has been computed with mesh M2. The flow picture, corresponding to this case, in
Figure 3 has been obtained with the coarser mesh of M1. On comparing the two solutions it
can be observed that near-field solutions obtained from both the meshes is quite similar, while
the far-wake appears to be more dissipated for the one computed on the coarse mesh (M1).
Time histories of the displacements of the cylinder and the lift and drag coefficients computed
with the two meshes show very close values. This is consistent with the observation that the
near-field solutions are quite similar. The amplitude of cross-flow vibrations are an order of
magnitude larger than those in the in-line direction. Therefore, the flow field obtained with
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Figure 5. Re=325 flow past an oscillating cylinder with Fs=0.07 (=F0/3), Fs=0.105 (=F0/2), Fs=0.42 (=2F0),
Fs=0.53 (=2.5F0), Fs=0.63 (=3F0) and Fs=0.84 (=4F0): time histories of the drag and lift coefficients and

cylinder displacements.
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Figure 6. Re=325 flow past an oscillating cylinder with Fs=0.21 (=F0) computed on mesh M2: vorticity and
pressure fields at five time instants during one cycle of cross-flow vibration of the cylinder for the periodic solution.
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these computations is very close to the one that is seen for a cylinder whose motion is restricted
to the cross-flow vibrations [7]. As a result of these vibrations the drag coefficient for the
cylinder increases while the lift coefficient decreases and an additional frequency (3F0) can be
observed in its power spectrum. The frequency of the cross-flow oscillations is equal to the
structural frequency of the oscillator. As expected, since the drag force experienced by the
cylinder oscillates at twice the frequency of the lift force, the in-line vibrations are at twice the
cross-flow oscillation frequency of the oscillator. The trajectory of the cylinder corresponds to
a Lissajou figure of 8. Same observations have been made earlier by researchers during
laboratory experiments [1,2]. As has been observed earlier [3,7,32], the oscillations of the
cylinder are self-limiting, i.e. as the amplitude of cross-flow oscillations increases, the time-
varying component of the lift coefficient reduces so that the amplitude of cross-flow vibrations
do not increase beyond a certain value. An additional frequency appears in the power
spectrum of the lift coefficient the effect of which is, perhaps, again to limit the cross-flow
oscillations. The remaining rows in Figure 5 show the time histories of the drag and lift
coefficients and the cylinder displacement for the cases with Fs=0.42, 0.53, 0.63 and 0.84. The
flow fields for the oscillating cylinder with Fs equal to superharmonics of F0 are quite similar
to the one observed for a stationary cylinder. Computations for Fs=0.53 (=2.5F0) reveal
similar behavior.

In the remaining part of this section, efforts will be concentrated on the study of the
oscillator for values of Fs close to the natural vortex-shedding frequency, F0. Figure 8 shows
the vorticity and pressure fields at five time instants during one cycle of cross-flow vibration
of the cylinder for the periodic solution when Fs=0.18. The time histories of the drag and lift
coefficients and cylinder displacements for this case are shown in the first row of Figure 9. This
solution has been computed with mesh M2. The flow pictures, corresponding to the computa-
tions for the same case with the coarser mesh M1, for the peak value of the cross-flow
displacement, are shown in Figure 10. Lock-in is observed in this case and the cylinder exhibits
cross-flow vibrations with a frequency Fs and in-line oscillations with a frequency 2Fs. The
cylinder motion corresponds to a Lissajou figure of 8. The solutions obtained from both the
meshes, M1 and M2, are quite similar except that the solution on mesh M1 appears a little
dissipated as compared with the one computed on mesh M2. Compared with the solution for
stationary cylinder, the longitudinal spacing between the vortices in the present case is higher.
This observation is consistent with the one made by Koopmann [5] in course of his
experiments with forced cross-flow vibrations of cylinders and with the computations of Mittal
and Tezduyar [7]. During lock-in, the vortex-shedding frequency matches the cylinder oscilla-
tion frequency. It is less than F0 in this particular case (Fs=0.18). Therefore, in the present
case, fewer number of vortices are shed in a given time interval compared with the fixed
cylinder case (or for the oscillating cylinder when Fs=F0). This causes an increase in the
longitudinal spacing between the shed vortices in the wake. Similarly, for Fs\F0 the
longitudinal spacing between the vortices decreases if lock-in occurs. The time histories of the
drag and lift coefficients and cylinder displacements for the computations with Fs=0.19, 0.20,
0.22 and 0.23 are shown in Figure 9. Lock-in is observed for all the cases. However, for
Fs=0.22 and 0.23, the vortex-shedding frequency locks on to a value (=0.21 for Fs=0.22 and
0.216 for Fs=0.23) that is slightly lower than Fs. We have already referred to this phenomenon
as soft-lock-in. The cross-flow vibration frequency of the cylinder corresponds to the vortex-
shedding frequency while that in the in-line direction is twice this value. The flow pictures for

Figure 7. Re=325 flow past an oscillating cylinder with Fs=0.21 (=F0) computed on mesh M2: time histories of the
drag and lift coefficients, cylinder displacements, their power spectra and phase plots.
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Figure 8. Re=325 flow past an oscillating cylinder with Fs=0.18 computed on mesh M2: vorticity and pressure fields
at five time instants during one cycle of cross-flow vibration of the cylinder for the periodic solution.
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Fs=0.23 computed with mesh M2 are shown in Figure 11 for one cycle of the cylinder motion
while that computed with mesh M1, for the peak value of the cross-flow displacement, are
shown in Figure 12. As in the previous cases, the solutions computed on mesh M1 and M2 are
quite similar in the near wake but different in the far wake. The solution on mesh M1 seems

Figure 9. Re=325 flow past an oscillating cylinder with Fs=0.18, 0.19, 0.20, 0.22 and 0.23 computed on mesh M2:
time histories of the drag and lift coefficients and cylinder displacements.
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Figure 10. Re=325 flow past an oscillating cylinder with Fs=0.18 computed on mesh M1: vorticity and pressure
fields at the peak value of the cross-flow displacement of the cylinder for the periodic solution.

to suggest that the vortices that are a few diameters downstream of the cylinder in the wake
coalesce. The solution on mesh M2 clearly shows that this is not true. To ascertain that this
is an artifact of spatial resolution, the solution from mesh M2 is projected on a much finer
mesh M3 and computations are continued. Figure 13 shows the streamwise variation of the ‘y ’
component of velocity at y/D=1.25 for the various meshes at the peak value of the cross-flow
displacement of the cylinder. Recall, that the center of the undisplaced cylinder coincides with
the origin. It can be seen from the figure that the near-wake solution, from all the three
meshes, is almost identical. Further downstream, in the wake region, the solution from mesh
M1 appears to be quite dissipated, while those from meshes M2 and M3 are quite comparable.
The time histories of the aerodynamic coefficients and the cylinder displacements obtained
with all the three meshes are almost indistinguishable.

The solutions for Fs=0.26 are shown in Figures 14 and 15, while those for Fs=0.27 are
shown in Figures 16 and 17. These cases are extremely interesting. The computations are
initiated on mesh M1. After a certain time has elapsed, the solution is projected onto mesh M2
(t=333 for Fs=0.26 and t=753 for Fs=0.27) and computations are continued. For these
two cases, qualitatively different solutions are observed with the two meshes. Computations on
mesh M1 do not lead to lock-in for both the cases while the situation is quite different with
mesh M2. The solution obtained with mesh M2 is projected on an even finer mesh (M3) and
computations are continued. Figure 18 shows the comparison of the time histories obtained
with the meshes M2 and M3. It can be observed that the solutions from the two meshes are
very close, which reinforces our confidence in the solutions obtained with M2. Figure 19 shows
the streamwise variation of the ‘y ’ component of velocity at y/D=1.25 for the various meshes
at the peak value of the cross-flow displacement of the cylinder. Unlike the case with Fs=0.23,
it can be seen from the figure that the solution obtained with mesh M1 is quite different than
the ones obtained with the other two more refined meshes, even in the near-wake. The
solutions for meshes M2 and M3 are almost identical in the near-wake, but further down-
stream the solution from mesh M2 is marginally diffused compared with the one from M3.
This suggests that the mesh M1, which was adequate for lower values of Fs, is insufficient to
resolve the flow structures for higher values of Fs. The cause of this behavior is related to the
phenomenon of lock-in. For larger values of Fs, when lock-in occurs, the longitudinal spacing
between the vortices decreases and, consequently, for a fixed size of the domain more number
of grid points are needed to resolve the wake adequately. Soft-lock-in is observed for Fs=0.26
and Fs=0.27, i.e. the vortex-shedding frequency is detuned from the structural frequency. It
is 0.230 for Fs=0.26 and 0.232 for Fs=0.27. Despite the detuning, the cylinder continues to
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Figure 11. Re=325 flow past an oscillating cylinder with Fs=0.23 computed on mesh M2: vorticity and pressure
fields at five time instants during one cycle of cross-flow vibration of the cylinder for the periodic solution.
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Figure 12. Re=325 flow past an oscillating cylinder with Fs=0.23 computed on mesh M1: vorticity and pressure
fields at the peak value of the cross-flow displacement of the cylinder for the periodic solution.

exhibit large amplitude cross-flow oscillations with frequency equal to the vortex-shedding
frequency.

Figure 20 shows the time histories of the drag and lift coefficients, cylinder displacements
and phase plots for Fs=0.32. The computations are initiated with mesh M1. At t=357 the
solution is projected to mesh M2 and computations are continued. It can be observed that
there are both low and high frequency components in the time histories of all the quantities.
The dominant frequency in the time variation of the lift force is 0.23. Unlike the previous
cases, lock-in is not observed and the trajectory of the cylinder motion does not follow a figure
of 8. The dominant frequency in the time variation of both the in-line and cross-flow
vibrations is 0.46. Figures 21 and 22 show the flow fields during one cycle of the cylinder
motion in the cross-flow direction for small and large amplitude cycles respectively. The two
sets of flow pictures are quite different and represent two modes of vortex-shedding. The
figures showing the time histories also suggest a competition between the two modes. It should
also be mentioned that the solution remains virtually the same when it is projected from the
mesh M2 to mesh M3 and the computations are continued. The qualitative nature of the
solutions obtained from all the three meshes is very similar. Computations for Fs=0.35 also
exhibit mode competition. The solution computed on mesh M1 is shown in Figure 23. The
amplitude of cross-flow vibrations is much lower than in the other cases. The presence of two

Figure 13. Re=325 flow past an oscillating cylinder with Fs=0.23: variation of the y component of velocity at
y/D=1.25 corresponding to the peak value of the cross-flow displacement of the cylinder for various meshes. The

center of the undisplaced cylinder lies at the origin.
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Figure 14. Re=325 flow past an oscillating cylinder with Fs=0.26 computed on mesh M2: vorticity and pressure
fields at five time instants during one cycle of cross-flow vibration of the cylinder for the periodic solution.
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distinct peaks in the power spectrum of the time history of the lift coefficient is an additional
evidence for the presence of two modes of vortex-shedding, one at a low frequency (close to
that for a stationary cylinder) and the other at a higher frequency (approximately 0.23), which
is the maximum that has been observed for the oscillating cylinder, for the present computa-
tions. It is an interesting observation that any significant effect of the mesh on the unsteady
solution is noticed only in a small window of values of Fs close to 0.27. This observation
supports the reason for mesh dependence of the solution that was suggested earlier in this
section.

Figure 15. Re=325 flow past an oscillating cylinder with Fs=0.26 computed on mesh M1 for tB333 and on mesh
M2 for t\333: time histories of the drag and lift coefficients, cylinder displacements, their power spectra and phase

plots.
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Figure 16. Re=325 flow past an oscillating cylinder with Fs=0.27 computed on mesh M2: vorticity and pressure
fields at five time instants during one cycle of cross-flow vibration of the cylinder for the periodic solution.
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Figure 17. Re=325 flow past an oscillating cylinder with Fs=0.27 computed on mesh M1 for tB753 and on mesh
M2 for t\753: time histories of the drag and lift coefficients, cylinder displacements, their power spectra and phase

plots.

4.3. Fs=0.25, Re=325 flow past an oscillating cylinder: effect of oscillator mass

It was observed in the previous section that for certain values of Fs, the vortex-shedding
frequency for an oscillating cylinder assumes a value that is somewhere in between the natural
vortex-shedding frequency for stationary cylinder and the structural frequency. We have
referred to this phenomenon as soft-lock-in. The cylinder, as expected, oscillates with the
vortex-shedding frequency. To investigate the cause of this behavior, the effects of oscillator
mass and the restriction of its motion to cross-flow vibrations is studied. It is seen from our
computations (the results are not presented here) that the restriction of the motion of the
cylinder to the cross-flow vibrations does not affect the results. Soft-lock-in is still observed.
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The next parameter to be studied is the mass of the oscillator. The top row of Figure 24 shows
the time histories of the drag and lift coefficients and the cylinder displacements for Fs=0.25
and for the mass of the oscillator as in the previous section (M=4.73) computed with mesh
M2. The solution looks quite similar to the one obtained in the previous section for Fs=0.26.
The frequency of vortex-shedding and the cross-flow vibrations of the cylinder is 0.227. The
solutions obtained for an increased mass of the oscillator (M=25.0) are shown in the second
row of Figure 24. It is observed that the increase in mass leads to a reduced amplitude of
in-line oscillations. However, there is no change in the amplitude of cross-flow vibrations. It
should be noticed that the amplitude of vibrations observed by Mittal and Tezduyar [7] for an
oscillator that is a hundred times heavier than the present one is comparable with that in the
current case. This is a very interesting behavior and reflects the self-limiting nature of the
flow-induced vibrations. The vortex-shedding frequency of the oscillator with the increased
mass is 0.245. We observe that, as the mass of the oscillator increases, the vortex-shedding
frequency approaches the structural frequency. This suggests that it is the mass of the cylinder
that is responsible for the phenomenon of soft-lock-in. Of course, if the mass of the oscillator

Figure 18. Re=325 flow past an oscillating cylinder with Fs=0.26: comparison of the time histories of the drag and
lift coefficients and cylinder displacements computed on the meshes M2 and M3.
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Figure 19. Re=325 flow past an oscillating cylinder with Fs=0.26: variation of the y component of velocity at
y/D=1.25 corresponding to the peak value of the cross-flow displacement of the cylinder for various meshes. The

center of the undisplaced cylinder lies at the origin.

is increased beyond a certain value, the oscillator would cease to lock-in and the range of
values of the structural frequency for which lock-in occurs would be reduced to a narrower
band. The results presented by Cetiner and Unal [33] suggest a similar trend. It is our belief,
based on several observations made by us and other researchers in the past, that the various
mechanisms by which the oscillator is able to self-limit its cross-flow vibrations are by a
reduction in the lift force amplitude, appearance of additional frequency components in the
time histories of the lift force and detuning of the vortex-shedding frequency from the
structural frequency. The first two mechanisms are quite well known. However, to the best of
our knowledge, the last mechanism has not been reported before.

5. CONCLUSIONS

Vortex-induced vibrations of a circular cylinder placed in a uniform flow at a Reynolds
number of 325 have been studied using a stabilized space–time finite element formulation. The
cylinder is allowed to vibrate, both in the in-line and cross-flow directions. The behavior of the
oscillator for various values of the structural frequency (Fs) including those that are sub and
superharmonics of the natural vortex-shedding have been presented. In most of the cases, the
trajectory of the cylinder corresponds to a Lissajou figure of 8. The frequency of the in-line
oscillations is twice of that in the cross-flow direction. Unlike some of the previous studies that
reported subharmonic resonance for forced oscillations of a cylinder, our results do not reveal
such behavior. The behavior of the vortex-shedding frequency of the oscillating cylinder is a
little different than what is conventionally observed. It has been observed by various
researchers in the past that for a certain range of the structural frequency (Fs), the vortex-
shedding frequency of an oscillating cylinder locks on to Fs. This phenomenon is referred to
as lock-in. Most of these observations have been made for cylinders whose effective material
density is much larger than that of the surrounding fluid. In the present study it has been
observed that over a certain range of Fs, the vortex-shedding frequency of the oscillating

Figure 20. Re=325 flow past an oscillating cylinder with Fs=0.32 computed on mesh M1 for tB357 and on mesh
M2 for t\357: time histories of the drag and lift coefficients, cylinder displacements, their power spectra and phase

plots.
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Figure 21. Re=325 flow past an oscillating cylinder with Fs=0.32 computed on mesh M2: vorticity and pressure
fields at five time instants during one cycle of small amplitude cross-flow vibration of the cylinder.
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Figure 22. Re=325 flow past an oscillating cylinder with Fs=0.32 computed on mesh M2: vorticity and pressure
fields at five time instants during one cycle of large amplitude cross-flow vibration of the cylinder.
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Figure 23. Re=325 flow past an oscillating cylinder with Fs=0.35 computed on mesh M1: time histories of the drag
and lift coefficients, cylinder displacements, their power spectra and phase plots.

cylinder does not exactly match the structural frequency; there is a slight detuning. This
phenomenon is referred to as soft-lock-in. Our computations show that this detuning disap-
pears if the mass of the cylinder is much larger than the mass of the surrounding fluid it
displaces. A self-limiting nature of the oscillator with respect to cross-flow vibration amplitude
is observed. As the vibration amplitude increases, the flow changes and so do the aerodynamic
forces acting on the cylinder to limit the amplitude of oscillation. In certain cases, even when
the mass of the oscillator is reduced by two orders of magnitude, there is no appreciable
change in the vibration amplitude. The detuning of the vortex-shedding frequency from the
structural frequency is a mechanism of the oscillator to self-limit its vibration amplitude and,
to the best of the knowledge of the authors, has not been reported before. The dependence of
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Figure 24. Re=325 flow past an oscillating cylinder with Fs=0.25 computed on mesh M2: time histories of the drag
and lift coefficients and cylinder displacements for M=4.73 and 25.0.

the unsteady solution on the spatial resolution of the finite element mesh has been investigated.
Our calculations demonstrate that even though a mesh may be good enough to resolve all the
flow structures at a certain Reynolds number, the same mesh in certain cases may not provide
enough resolution for computing flows involving moving boundaries and interfaces.
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